Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Tomography ; 8(3): 1578-1585, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1964057

ABSTRACT

(1) Background: Quantitative CT analysis (QCT) has demonstrated promising results in the prognosis prediction of patients affected by COVID-19. We implemented QCT not only at diagnosis but also at short-term follow-up, pairing it with a clinical examination in search of a correlation between residual respiratory symptoms and abnormal QCT results. (2) Methods: In this prospective monocentric trial performed during the "first wave" of the Italian pandemic, i.e., from March to May 2020, we aimed to test the relationship between %deltaCL (variation of %CL-compromised lung volume) and variations of symptoms-dyspnea, cough and chest pain-at follow-up clinical assessment after hospitalization. (3) Results: 282 patients (95 females, 34%) with a median age of 60 years (IQR, 51-69) were included. We reported a correlation between changing lung abnormalities measured by QCT, and residual symptoms at short-term follow up after COVID-19 pneumonia. Independently from age, a low percentage of surviving patients (1-4%) may present residual respiratory symptoms at approximately two months after discharge. QCT was able to quantify the extent of residual lung damage underlying such symptoms, as the reduction of both %PAL (poorly aerated lung) and %CL volumes was correlated to their disappearance. (4) Conclusions QCT may be used as an objective metric for the measurement of COVID-19 sequelae.


Subject(s)
COVID-19 , Aged , COVID-19/diagnostic imaging , Female , Humans , Infant , Lung/diagnostic imaging , Middle Aged , Pandemics , Prospective Studies , Tomography, X-Ray Computed/methods
2.
J Clin Med ; 10(13)2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1288928

ABSTRACT

BACKGROUND: Hemostatic abnormalities have been described in COVID-19, and pulmonary microthrombosis was consistently found at autopsy with concomitant severe lung damage. METHODS: This is a retrospective observational cross-sectional study including consecutive patients with COVID-19 pneumonia who underwent unenhanced chest CT upon admittance at the emergency room (ER) in one large academic hospital. QCT was used for the calculation of compromised lung volume (%CL). Clinical data were retrieved from patients' files. Laboratory data were obtained upon presentation at the ER. AIM: The aim of this study was to evaluate the correlation between hemostatic abnormalities and lung involvement in patients affected by COVID-19 pneumonia as described using computer-aided quantitative evaluation of chest CT (quantitative CT (QCT)). RESULTS: A total of 510 consecutive patients (68% males), aged 67 years in median, diagnosed with COVID-19 pneumonia, who underwent unenhanced CT scan upon admission to the ER, were included. In all, 115 patients had %CL > 23%; compared to those with %CL < 23%, they showed higher levels of D-dimer, fibrinogen, and CRP, greater platelet count, and longer PT ratio. Via multivariate regression analysis, BMI ≥ 30 kg/m2, D-dimer levels > 500 ng/mL, CRP > 5.0 ng/mL and PT ratio > 1.2 were found to be independent predictors of a %CL > 23% (adjusted odds ratios (95% confidence intervals): 2.1 (1.1-4.0), 3.1 (1.6-5.8), 2.4 (1.3-4.5), and 3.4 (1.4-8.5), respectively). CONCLUSIONS: Hemostatic abnormalities in patients affected by COVID-19 correlate with the severity of lung injury as measured by %CL. Our results underline the pathogenetic role of hemostasis in COVID-19 pneumonia beyond the presence of clinically evident thromboembolic complications.

SELECTION OF CITATIONS
SEARCH DETAIL